서양서협동조합 메인

The GAPS Programme at TNG - XXX. Atmospheric Rossiter-McLaughlin Effect and Atmospheric Dynamics Of KELT-20b > 자유게시판

이벤트상품
  • 이벤트 상품 없음
Q menu
오늘본상품

오늘본상품 없음

TOP
DOWN

The GAPS Programme at TNG - XXX. Atmospheric Rossiter-McLaughlin Effec…

페이지 정보

작성자 Dawna 댓글 0건 조회 302회 작성일 23-11-24 14:15

본문


XXX. Atmospheric Rossiter-McLaughlin effect and atmospheric dynamics of KELT-20b★

M. Rainer1, F. Borsa2, L. Pino1,3, G. Frustagli2,4, M. Brogi5,6,7, K. Biazzo8, A. S. Bonomo6, I. Carleo9,10, R. Claudi10, R. Gratton10, A. F. Lanza11, A. Maggio12, J. Maldonado12, L. Mancini13,14,6, G. Micela12, G. Scandariato11, A. Sozzetti6, N. Buchschacher15, R. Cosentino17, E. Covino16, A. Ghedina17, M. Gonzalez17, G. Leto11, M. Lodi17, A. F. Martinez Fiorenzano17, E. Molinari18, M. Molinaro19, D. Nardiello20,10, E. Oliva1, I. Pagano11, M. Pedani17, G. Piotto21 and E. Poretti17

1 INAF - Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, 50125 Firenze, Italye-mail: monica.rainer@inaf.it2 INAF - Osservatorio Astronomico di Brera, Via E. Bianchi, 46, 23807 Merate (LC), Italy3 Anton Pannekoek Institute for Astronomy, University of Amsterdam Science Park 904 1098 XH Amsterdam, The Netherlands4 Università degli Studi di Milano Bicocca, Piazza dell’Ateneo Nuovo, 1, 20126 Milano, Italy5 Department of Physics, University of Warwick, Coventry CV4 7AL, UK6 INAF - Osservatorio Astrofisico di Torino, Via Osservatorio 20, 10025 Pino Torinese (TO), Italy7 Centre for Exoplanets and Habitability, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK8 INAF - Osservatorio Astronomico di Roma, Via Frascati 33, 00078 Monte Porzio Catone (Roma), Italy9 Astronomy Department and Van Vleck Observatory, Wesleyan University, Middletown, CT 06459, USA10 INAF - Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio, 5, 35122 Padova (PD), Italyeleven INAF - Osservatorio Astrofisico di Catania, Via S. Sofia 78, 95123 Catania, Italy12 INAF - Osservatorio Astronomico di Palermo, Piazza del Parlamento, 1, 90134 Palermo, Italy13 Department of Physics, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy14 Max Planck Institute for Astronomy, Königstuhl 17, 69117, Heidelberg, Germany15 Department of Astronomy, University of Geneva, Chemin des Maillettes 51, 1290 Versoix, Suissesixteen INAF - Osservatorio Astronomico di Capodimonte, Salita Moiariello 16, 80131 Napoli, Italy17 INAF - Fundación Galileo Galilei, Rambla José Ana Fernandez Pérez 7, 38712 Breña Baja (TF), Spain18 INAF - Osservatorio Astronomico di Cagliari, Via della Scienza 5, 09047 Cuccuru Angius, Selargius (CA), Italy19 INAF - Osservatorio Astronomico di Trieste, Via Giambattista Tiepolo, 11, 34131 Trieste, Italy20 Aix-Marseille Université, CNRS, CNES, LAM, Marseille, France21 Dipartimento di Fisica e Astronomia Galileo Galilei - Università di Padova, Vicolo dell’Osservatorio 2, 35122 Padova, Italy

Received: 24 August 2020Accepted: 16 March 2021

Abstract

Context. Transiting extremely-sizzling Jupiters are ultimate candidates for learning the exoplanet atmospheres and their dynamics, notably by means of high-resolution spectra with high signal-to-noise ratios. One such object is KELT-20b. It orbits the quick-rotating A2-sort star KELT-20. Many atomic species have been present in its environment, with blueshifted indicators that point out a day- to night-side wind.

Aims. We observe the atmospheric Rossiter-McLaughlin impact within the extremely-sizzling Jupiter KELT-20b and examine any variation of the atmospheric signal in the course of the transit. For this goal, we analysed 5 nights of HARPS-N spectra overlaying 5 transits of KELT-20b.

Methods. We computed the imply line profiles of the spectra with a least-squares deconvolution using a stellar mask obtained from the Vienna Atomic Line Database (Teff = 10 000 K, log g = 4.3), after which we extracted the stellar radial velocities by fitting them with a rotational broadening profile in order to acquire the radial velocity time-sequence. We used the mean line profile residuals tomography to analyse the planetary atmospheric signal and its variations. We additionally used the cross-correlation technique to check a beforehand reported double-peak characteristic in the FeI planetary signal.

Results. We noticed both the classical and the atmospheric Rossiter-McLaughlin effect in the radial velocity time-sequence. The latter gave us an estimate of the radius of the planetary environment that correlates with the stellar mask used in our work (Rp+atmo∕Rp = 1.Thirteen ± 0.02). We remoted the planetary atmospheric trace in the tomography, and we found radial velocity variations of the planetary atmospheric signal during transit with an total blueshift of ≈10 km s−1, together with small variations in the sign depth, and less significant, in the total width at half maximum (FWHM). We also find a doable variation within the structure and place of the FeI signal in numerous transits.

Conclusions. We confirm the previously detected blueshift of the atmospheric sign in the course of the transit. The FWHM variations of the atmospheric sign, if confirmed, may be brought on by extra turbulent condition in the beginning of the transit, by a variable contribution of the elements current in the stellar mask to the general planetary atmospheric sign, or by iron condensation. The FeI sign show indications of variability from one transit to the subsequent.

In case you cherished this information in addition to you would want to obtain details concerning momxxx i implore you to pay a visit to the webpage.

댓글목록

등록된 댓글이 없습니다.